
1

Peeking into Black Boxes: Automated

Fuzzing of Router Resource Usage
Matthias Wichtlhuber* | Christian Steinhaus* | Johannes Krude+ | Klaus Wehrle+

*DE-CIX | +COMSYS Chair, RWTH Aachen University

matthias.wichtlhuber@de-cix.net

2

Motivation

Managing changes in critical networking

infrastructures requires thorough testing

Router resource testing often is a blind spot in

test plans (black box)

• Where are the router‘s limits (e.g. TCAM space)?

• How much headroom is left for future innovation?

Reasons:

• Vendors are tight-lipped on hardware resources

• Complex topic (even for vendors)

?

3

Our Approach

Fuzzing/fuzzy testing in security research [1]

• Automated security testing

• Generate random inputs, monitor implementation behavior

We are not looking for security issues but explore

the HW limits of the router under test

1. Generate masses of guided, valid configuration changes

2. Measure router behavior: runtime errors and exposed

hardware counters

3. Correlate configuration and measurements, identify scaling

behavior and possible bottlenecks

[1] https://en.wikipedia.org/wiki/Fuzzing

4

Fuzzing Framework Design

 Modular five stage framework

• Based on Python and Jinja2 for templating

• Flexible and adaptable (e.g. different vendors)

Use existing production configuration

• Extend as required by test case

• Evaluate scalability of single routers (i.e. vertical)

 Design goals

• Automation of repetitive steps (>1000 configurations)

• Visualization + Identification of bottlenecks

• User support in all stages

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

Data

Generation

Data

Processing

5

Framework Design: Parameterization

 User provides production configuration

 Extract scaling parameters
1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

Data

Generation

Data

Processing

Running

Configuration

Base

Config

X / Y

Context +

Scaling

Parameters
Configuration

Parsing

6

Framework Design: Config Scaling

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumers

Jinja Template
forwarding

{% for policyid, policy in e_pol.items() %}
new rule {{ policyid }}

description {{ policy.description }}
done

done

Context
“e_pol”: {

1: {
“descr”: “This is policy 1”

},
. . .
678: {

“descr”: “Last policy”
}

}

Rendered Extension Config
forwarding

new rule 1
description “This is policy 1”

done
. . .
new rule 678

description “Last policy”
done

done

+

From parameterization

x

y

7

Framework Design: Configuration Rollout

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

Data

Generation

Data

Processing

 Rollout

• Apply configuration on test router

• Gather logs (accepted/rejected,

errors, hardware counter dumps, …)

• Create clean test environment

(reboot or rollbacks)

Base

Config

Rendered

Config

Extension Execution Log

Error Log

Resource Dumps

SSH

8

Framework Design: Data Cleanup

Extract data

• Execution log

• Error codes

• Resource usage

Create data pool

• Combine data from all runs

Standardize output

• (see right)

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

Data

Generation

Data

Processing

{
"desc": "Resource X",
"linecard": "20",
"allocated": null,
"scaling_x": 111,
"scaling_y": 222,
"error": "42",
"errordesc": “Resource X exhausted“

}

9

Visualization

• Generate plots on measured

errors

• Visualize resource usage

Predictive modelling

• Decision tree model

• Provides flow-chart like predictions whether a scaled

configuration will exceed available resources

• Useful for management and predictive maintenance

Framework Design: Data Consumption

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

Data

Generation

Data

Processing

x

y

10

Case Study: QoS+ACLs for Traffic Filtering

 Test Setup

• Complex service router with

multiple line cards

• Production configuration of a multiple

Tbps/>100 ports router as a base

configuration

• Generated extension

configurations scale #QoS

policies and #ACLs per policy

 Use Case

• Drop DDoS/unwanted traffic at IXP

• How many QoS policies+ACLs per

port can we apply before

running out of resources?

• How does resource usage scale?

• What are the bottleneck

resources?

In the following, axes of plots are obfuscated due to NDAs.

11

Timescale of Experiments

 Total runtime

• Configuration scaling, rollout, data collection, environment cleanup

• Environment cleanup is the bottleneck (see next slide)

Step Size

(#QoS and #ACLs/QoS)

10 20 40 80

Time 23h11m 5h44m 100m 23m

#Data Points 2295 598 168 48

12

Environment Cleanup: Rollback vs. Reboot

x2.5

• At least 2.5 times speedup

with rollbacks compared to

reboots per measurement

• Rollback time depends on

size of extension configs

• Plateaus () indicate large

failing configs

13

Resource Usage

Aggregation across all line cards

• Identify bottleneck (max. HW counters)

Drill down per line card for Resource A

• Identify bottleneck hardware module

Resource A Resource B

Resource C Resource D

New QoS Definitions [#]

IP
 R

u
le

s
 p

e
r

Q
o
S

 D
e
fi
n
it
io

n
 [
#
]

Line Card 1 Line Card 2

Line Card 3 Line Card 4

New QoS Definitions [#]

14

Resource Usage

Aggregation across whole device

• Identify bottleneck (max. HW counters)

Drill down per line card for Resource A

• Identify bottleneck hardware module

Resource A Resource B

Resource C Resource D

New QoS Definitions [#]

IP
 R

u
le

s
 p

e
r

Q
o
S

 D
e
fi
n
it
io

n
 [
#
]

Line Card 1 Line Card 2

Line Card 3 Line Card 4

New QoS Definitions [#]

15

Monitoring without Measurements

 Can we use the datasets to approximate resource usage without measurement?

 Predictive maintenance can help mitigating problems even before deployment

Production

Configuration

Extract

scaling

parameters

Predict

resource

usage

Machine

Learning model

16

Decision Tree Resource Model

Decision Tree ML-model

Train/test (70/30) split of

measured data

Prediction accuracy > 98%

Tree depth allows tuning

understandability vs. accuracy

trade-off

Maximum Depth 1

Maximum Depth 2

Maximum Depth 4

Maximum Depth 8

98.67%

98.22%

93.04%

Accuracy

77.93%

17

Summary and Conclusions
Deploying new features to critical infrastructure often requires resource testing

• Vendors are tight-lipped on hardware resources

• Resource testing can become complex quickly

18

Summary and Conclusions
Deploying new features to critical infrastructure often requires resource testing

• Vendors are tight-lipped on hardware resources

• Resource testing can become complex quickly

Our method/framework supports resource testing automation

• Generates more than 2000 data points in < 24 hours

• Identifies bottleneck per router and per line card

• Creates accurate and human readable prediction models

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

19

Summary and Conclusions
Deploying new features to critical infrastructure often requires resource testing

• Vendors are tight-lipped on hardware resources

• Resource testing can become complex quickly

Our method/framework supports resource testing automation

• Generates more than 2000 data points in < 24 hours

• Identifies bottleneck per router and per line card

• Creates accurate and human readable prediction models

The general method has been used in practice by DE-CIX

• For assessing configuration changes and for dimensioning products

• For assessing the accuracy of simulated router instances vs. real-world hardware

• For validating vendor claims on HW capabilities

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany

Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net

Thank You for Your attention!

