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Motivation

Managing changes in critical networking 

infrastructures requires thorough testing

Router resource testing often is a blind spot in 

test plans (black box)

• Where are the router‘s limits (e.g. TCAM space)?

• How much headroom is left for future innovation?

Reasons: 

• Vendors are tight-lipped on hardware resources

• Complex topic (even for vendors)

?



3

Our Approach

Fuzzing/fuzzy testing in security research [1]

• Automated security testing

• Generate random inputs, monitor implementation behavior

We are not looking for security issues but explore

the HW limits of the router under test

1. Generate masses of guided, valid configuration changes

2. Measure router behavior: runtime errors and exposed

hardware counters 

3. Correlate configuration and measurements, identify scaling

behavior and possible bottlenecks

[1] https://en.wikipedia.org/wiki/Fuzzing
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Fuzzing Framework Design

 Modular five stage framework

• Based on Python and Jinja2 for templating

• Flexible and adaptable (e.g. different vendors)

Use existing production configuration

• Extend as required by test case

• Evaluate scalability of single routers (i.e. vertical)

 Design goals

• Automation of repetitive steps (>1000 configurations)

• Visualization + Identification of bottlenecks

• User support in all stages

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

Data 

Generation

Data 

Processing
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Framework Design: Parameterization

 User provides production configuration

 Extract scaling parameters
1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

Data 
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Data 
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Framework Design: Config Scaling

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumers

Jinja Template
forwarding

{% for policyid, policy in e_pol.items() %}
new rule {{ policyid }}

description {{ policy.description }}
done

done

Context
“e_pol”: {

1: {
“descr”: “This is policy 1”

},
. . .
678: {

“descr”: “Last policy”
}

}

Rendered Extension Config
forwarding

new rule 1
description “This is policy 1”

done
. . .
new rule 678

description “Last policy”
done

done  

+

From parameterization

x

y
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Framework Design: Configuration Rollout

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

Data 

Generation

Data 

Processing

 Rollout

• Apply configuration on test router

• Gather logs (accepted/rejected, 

errors, hardware counter dumps, …)

• Create clean test environment 

(reboot or rollbacks)

Base

Config

Rendered

Config

Extension Execution Log

Error Log

Resource Dumps

SSH
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Framework Design: Data Cleanup

Extract data

• Execution log

• Error codes

• Resource usage

Create data pool

• Combine data from all runs

Standardize output

• (see right)

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

Data 

Generation

Data 

Processing

{ 
"desc": "Resource X",
"linecard": "20",
"allocated": null,
"scaling_x": 111,
"scaling_y": 222,
"error": "42",
"errordesc": “Resource X exhausted“

}
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Visualization

• Generate plots on measured

errors

• Visualize resource usage

Predictive modelling

• Decision tree model

• Provides flow-chart like predictions whether a scaled 

configuration will exceed available resources

• Useful for management and predictive maintenance

Framework Design: Data Consumption

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

Data 

Generation

Data 

Processing

x

y
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Case Study: QoS+ACLs for Traffic Filtering

 Test Setup

• Complex service router with 

multiple line cards

• Production configuration of a multiple

Tbps/>100 ports router as a base

configuration

• Generated extension 

configurations scale #QoS 

policies and #ACLs per policy

 Use Case

• Drop DDoS/unwanted traffic at IXP

• How many QoS policies+ACLs per 

port can we apply before

running out of resources?

• How does resource usage scale?

• What are the bottleneck 

resources?

In the following, axes of plots are obfuscated due to NDAs.
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Timescale of Experiments

 Total runtime

• Configuration scaling, rollout, data collection, environment cleanup

• Environment cleanup is the bottleneck (see next slide)

Step Size

(#QoS and #ACLs/QoS)

10 20 40 80

Time 23h11m 5h44m 100m 23m

#Data Points 2295 598 168 48
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Environment Cleanup: Rollback vs. Reboot

x2.5

• At least 2.5 times speedup 

with rollbacks compared to 

reboots per measurement

• Rollback time depends on 

size of extension configs

• Plateaus (    ) indicate large 

failing configs
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Resource Usage

Aggregation across all line cards

• Identify bottleneck (max. HW counters)

Drill down per line card for Resource A

• Identify bottleneck hardware module

Resource A Resource B

Resource C Resource D

New QoS Definitions [#]
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Resource Usage

Aggregation across whole device

• Identify bottleneck (max. HW counters)

Drill down per line card for Resource A

• Identify bottleneck hardware module

Resource A Resource B

Resource C Resource D

New QoS Definitions [#]
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Monitoring without Measurements

 Can we use the datasets to approximate resource usage without measurement?

 Predictive maintenance can help mitigating problems even before deployment

Production

Configuration

Extract

scaling

parameters

Predict

resource

usage

Machine

Learning model
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Decision Tree Resource Model

Decision Tree ML-model

Train/test (70/30) split of 

measured data

Prediction accuracy > 98%

Tree depth allows tuning 

understandability vs. accuracy 

trade-off

Maximum Depth 1

Maximum Depth 2

Maximum Depth 4

Maximum Depth 8

98.67%

98.22%

93.04%

Accuracy

77.93%
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Summary and Conclusions
Deploying new features to critical infrastructure often requires resource testing

• Vendors are tight-lipped on hardware resources

• Resource testing can become complex quickly
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Summary and Conclusions
Deploying new features to critical infrastructure often requires resource testing

• Vendors are tight-lipped on hardware resources

• Resource testing can become complex quickly

Our method/framework supports resource testing automation

• Generates more than 2000 data points in < 24 hours

• Identifies bottleneck per router and per line card

• Creates accurate and human readable prediction models

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption
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Summary and Conclusions
Deploying new features to critical infrastructure often requires resource testing

• Vendors are tight-lipped on hardware resources

• Resource testing can become complex quickly

Our method/framework supports resource testing automation

• Generates more than 2000 data points in < 24 hours

• Identifies bottleneck per router and per line card

• Creates accurate and human readable prediction models

The general method has been used in practice by DE-CIX

• For assessing configuration changes and for dimensioning products

• For assessing the accuracy of simulated router instances vs. real-world hardware

• For validating vendor claims on HW capabilities

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption
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