
1

Peeking into Black Boxes: Automated

Fuzzing of Router Resource Usage
Matthias Wichtlhuber* | Christian Steinhaus* | Johannes Krude+ | Klaus Wehrle+

*DE-CIX | +COMSYS Chair, RWTH Aachen University

matthias.wichtlhuber@de-cix.net

2

Motivation

Managing changes in critical networking

infrastructures requires thorough testing

Router resource testing often is a blind spot in

test plans (black box)

• Where are the router‘s limits (e.g. TCAM space)?

• How much headroom is left for future innovation?

Reasons:

• Vendors are tight-lipped on hardware resources

• Complex topic (even for vendors)

?

3

Our Approach

Fuzzing/fuzzy testing in security research [1]

• Automated security testing

• Generate random inputs, monitor implementation behavior

We are not looking for security issues but explore

the HW limits of the router under test

1. Generate masses of guided, valid configuration changes

2. Measure router behavior: runtime errors and exposed

hardware counters

3. Correlate configuration and measurements, identify scaling

behavior and possible bottlenecks

[1] https://en.wikipedia.org/wiki/Fuzzing

4

Fuzzing Framework Design

 Modular five stage framework

• Based on Python and Jinja2 for templating

• Flexible and adaptable (e.g. different vendors)

Use existing production configuration

• Extend as required by test case

• Evaluate scalability of single routers (i.e. vertical)

 Design goals

• Automation of repetitive steps (>1000 configurations)

• Visualization + Identification of bottlenecks

• User support in all stages

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

Data

Generation

Data

Processing

5

Framework Design: Parameterization

 User provides production configuration

 Extract scaling parameters
1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

Data

Generation

Data

Processing

Running

Configuration

Base

Config

X / Y

Context +

Scaling

Parameters
Configuration

Parsing

6

Framework Design: Config Scaling

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumers

Jinja Template
forwarding

{% for policyid, policy in e_pol.items() %}
new rule {{ policyid }}

description {{ policy.description }}
done

done

Context
“e_pol”: {

1: {
“descr”: “This is policy 1”

},
. . .
678: {

“descr”: “Last policy”
}

}

Rendered Extension Config
forwarding

new rule 1
description “This is policy 1”

done
. . .
new rule 678

description “Last policy”
done

done

+

From parameterization

x

y

7

Framework Design: Configuration Rollout

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

Data

Generation

Data

Processing

 Rollout

• Apply configuration on test router

• Gather logs (accepted/rejected,

errors, hardware counter dumps, …)

• Create clean test environment

(reboot or rollbacks)

Base

Config

Rendered

Config

Extension Execution Log

Error Log

Resource Dumps

SSH

8

Framework Design: Data Cleanup

Extract data

• Execution log

• Error codes

• Resource usage

Create data pool

• Combine data from all runs

Standardize output

• (see right)

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

Data

Generation

Data

Processing

{
"desc": "Resource X",
"linecard": "20",
"allocated": null,
"scaling_x": 111,
"scaling_y": 222,
"error": "42",
"errordesc": “Resource X exhausted“

}

9

Visualization

• Generate plots on measured

errors

• Visualize resource usage

Predictive modelling

• Decision tree model

• Provides flow-chart like predictions whether a scaled

configuration will exceed available resources

• Useful for management and predictive maintenance

Framework Design: Data Consumption

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

Data

Generation

Data

Processing

x

y

10

Case Study: QoS+ACLs for Traffic Filtering

 Test Setup

• Complex service router with

multiple line cards

• Production configuration of a multiple

Tbps/>100 ports router as a base

configuration

• Generated extension

configurations scale #QoS

policies and #ACLs per policy

 Use Case

• Drop DDoS/unwanted traffic at IXP

• How many QoS policies+ACLs per

port can we apply before

running out of resources?

• How does resource usage scale?

• What are the bottleneck

resources?

In the following, axes of plots are obfuscated due to NDAs.

11

Timescale of Experiments

 Total runtime

• Configuration scaling, rollout, data collection, environment cleanup

• Environment cleanup is the bottleneck (see next slide)

Step Size

(#QoS and #ACLs/QoS)

10 20 40 80

Time 23h11m 5h44m 100m 23m

#Data Points 2295 598 168 48

12

Environment Cleanup: Rollback vs. Reboot

x2.5

• At least 2.5 times speedup

with rollbacks compared to

reboots per measurement

• Rollback time depends on

size of extension configs

• Plateaus () indicate large

failing configs

13

Resource Usage

Aggregation across all line cards

• Identify bottleneck (max. HW counters)

Drill down per line card for Resource A

• Identify bottleneck hardware module

Resource A Resource B

Resource C Resource D

New QoS Definitions [#]

IP
 R

u
le

s
 p

e
r

Q
o
S

 D
e
fi
n
it
io

n
 [
#
]

Line Card 1 Line Card 2

Line Card 3 Line Card 4

New QoS Definitions [#]

14

Resource Usage

Aggregation across whole device

• Identify bottleneck (max. HW counters)

Drill down per line card for Resource A

• Identify bottleneck hardware module

Resource A Resource B

Resource C Resource D

New QoS Definitions [#]

IP
 R

u
le

s
 p

e
r

Q
o
S

 D
e
fi
n
it
io

n
 [
#
]

Line Card 1 Line Card 2

Line Card 3 Line Card 4

New QoS Definitions [#]

15

Monitoring without Measurements

 Can we use the datasets to approximate resource usage without measurement?

 Predictive maintenance can help mitigating problems even before deployment

Production

Configuration

Extract

scaling

parameters

Predict

resource

usage

Machine

Learning model

16

Decision Tree Resource Model

Decision Tree ML-model

Train/test (70/30) split of

measured data

Prediction accuracy > 98%

Tree depth allows tuning

understandability vs. accuracy

trade-off

Maximum Depth 1

Maximum Depth 2

Maximum Depth 4

Maximum Depth 8

98.67%

98.22%

93.04%

Accuracy

77.93%

17

Summary and Conclusions
Deploying new features to critical infrastructure often requires resource testing

• Vendors are tight-lipped on hardware resources

• Resource testing can become complex quickly

18

Summary and Conclusions
Deploying new features to critical infrastructure often requires resource testing

• Vendors are tight-lipped on hardware resources

• Resource testing can become complex quickly

Our method/framework supports resource testing automation

• Generates more than 2000 data points in < 24 hours

• Identifies bottleneck per router and per line card

• Creates accurate and human readable prediction models

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

19

Summary and Conclusions
Deploying new features to critical infrastructure often requires resource testing

• Vendors are tight-lipped on hardware resources

• Resource testing can become complex quickly

Our method/framework supports resource testing automation

• Generates more than 2000 data points in < 24 hours

• Identifies bottleneck per router and per line card

• Creates accurate and human readable prediction models

The general method has been used in practice by DE-CIX

• For assessing configuration changes and for dimensioning products

• For assessing the accuracy of simulated router instances vs. real-world hardware

• For validating vendor claims on HW capabilities

1. Parameterization

2. Config Scaling

3. Rollout

4. Data Cleanup

5. Data Consumption

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany

Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net

Thank You for Your attention!

