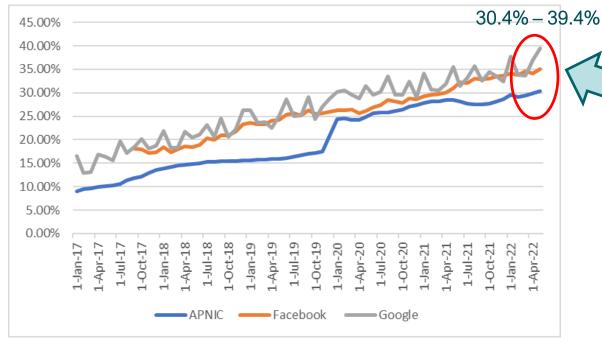


IPv6 Deployment: Latest Status and Remaining Challenges

Paolo Volpato

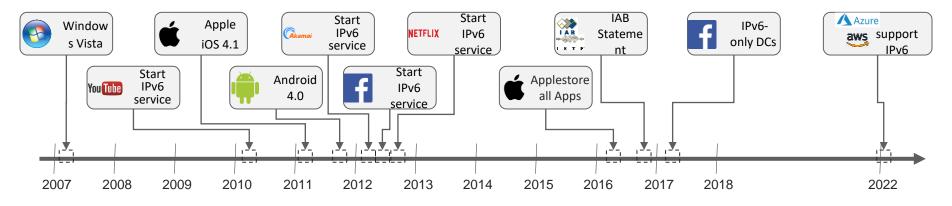
European Standardization and Industry Development (SID)


Huawei Technologies

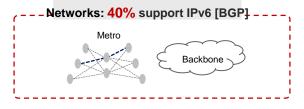
Background of This Presentation

- "IPv6 Deployment Status" is a work started at the v6ops WG of IETF around two years ago
- Goals of the paper:
 - To overview latest IPv6 deployment status (obsoleting RFC 6036)
 - To analyze the remaining challenges to the transition to IPv6
- Early results presented at RIPE 82
- Scope of this presentation:
 - Provide an update on the main findings a year later
 - Discuss the remaining challenges
 - Listen from the RIPE community if anything is missing, or there are ideas that may lead to further analysis on the topic.

IPv6 Positive Momentum

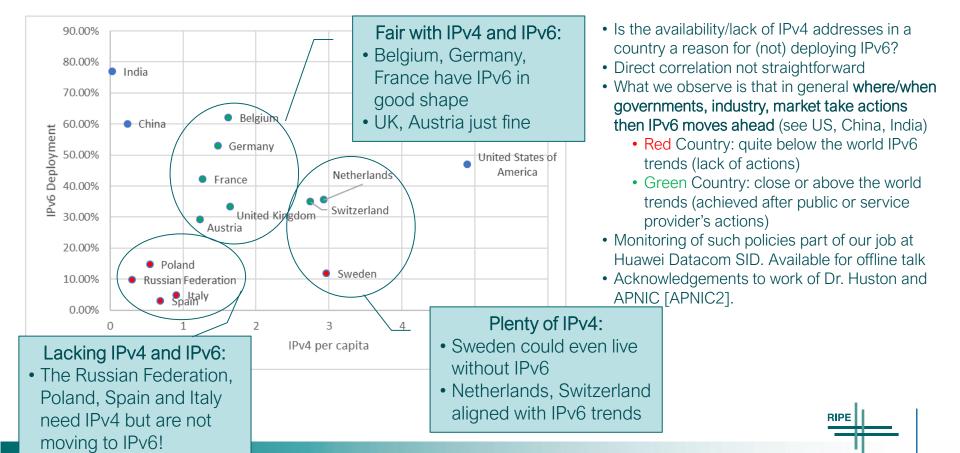

IPv6 connections

Data from [APNIC1], [ChStats], [Facebook], [Google], [Potaroo].


- IPv6 CAGR (2018-2022)
 23.9% >> Internet
 population CAGR 4.3%
- View from the "Western World"
- Economies such as China are not fully represented
- Roughly, add +5-7% [ChStats]
- This brings to ~45% (best case).

IPv6 Value Chain Ready: User - Network - Applications

IETF transition solutions ready by 2010; UEs & big applications ready by 2017; public clouds getting ready in 2022 to move SMEs to IPv6



In IPv6 value chain, networks slightly behind UEs and big applications/clouds

Public Actions Are a Driver for IPv6 in Europe

Despite IPv6 Steady Progress, Enterprises Lag Behind

Advertised ASNs	Jan-18	Jan-19	Jan-20	Jan-21	Jan-22	CAGR
IPv6-capable	14,500	16,470	18,650	21,400	28,140	18%
Total AS	59,700	63,100	66,800	70,400	72,800	5%
Ratio	24.3%	26.1%	27.9%	30.4%	38.7%	

- The CAGR of IPv6-capable Autonomous System (AS) Supporting IPv6 looks fine
 - +18% across the 5-years period, growing faster than IPv4
- Question: who is not supporting IPv6?
 - Researches indicate that enterprises are lagging behind in IPv6 deployment
 - How to handle the inaction of enterprises?
 - Data from [APNIC3], [APNIC4]

Challenge Analysis – An Overview

IPv6 experience sharing from leading carriers, IPv6 councils can help. Public agencies can drive

- Lack the business case, motivation or pressure to make the transition.
- Think that IPv6 may be delayed with NAT or IPv4 purchase.

Motivation

Ecosystem

- Knowledge .
- Technical staffs not aware of IP standards, progress and deployment.
 - Even worse, think IPv6 still has many issues to be solved.

- Classes of devices still not supporting IPv6 (e.g. old CPEs, smart TVs).
- Cloud providers moving to IPv6, but many SMEs aren't.
- Incompatible vendor roadmap.

ICT industry as a whole can act here

Technology

- Difficulty to identify transition path and technologies, in particular for SMEs.
- Some IPv6 features not field proven yet.
- Technical areas should need more investigation, or more knowledge sharing.

IETF, **Ripe**... can lead to solve the technical issues

IPv6 Challenges in Enterprises

- IPv6 in enterprises network is not a technical priority
 - In particular, in small and medium enterprises
 - Organizations driven by cost and risk models, hence no relevance to ICT unless key to the core business
- Speaking technically/operationally, some specific topics need to be considered anyway
 - For example, NAT become part of network architecture thinking
- How to move on: listen to and involve enterprises into discussion
 - Work together with enterprises to educate and identify suitable solutions to start with
 - Public agencies also have a role to push IPv6 further.

IPv6 Performance not yet Convincing

- IPv6 performance statistics still a bit worse than IPv4
 - IPv6 packet loss, e2e latency still higher
 - A few academic publications also indicate
 IPv6 is still catching up
- Good performance could be a real driver for IPv6 adoption
 - In particular, if end users would perceive the difference

Code	Region	Avg RTT Diff Avg V6 Fail (V6-V4) Rate
XA	World	0.93 ms 0.97%
XB	<u>Africa</u>	6.74 ms 0.74%
XD	<u>Asia</u>	4.72 ms 0.87%
XF	<u>Oceania</u>	3.50 ms 1.03%
<u>XE</u>	<u>Europe</u>	-4.19 ms 1.04%
XC	<u>Americas</u>	-9.96 ms 1.32%

Performance varies greatly, e.g. IPv6 performs better IPv4 in Europe and NA. Note, due to averaged values, a single region can drag down the world's measure [APNIC5].

- How to move on:
 - Would it make sense to think of a multi-players cooperation in this area?
 - E.g. field measurement or collaboration for a performance analysis.

Conclusion: More Can Still Be Done

- The progression of IPv6 deployment is still hindered by challenges
- A single or few stakeholders cannot make the difference
 - A combined joint effort by Governments, Industry players, Forums,
 Communities could
- Great to hear your opinion
 - There is a lot of knowledge that can be shared across the community
 - Operational guidelines, best current practices, ideas for new works...
 - For example, is there anything you feel should be really fixed in IPv6?
 - If there is interest, happy to talk about it.

Many thanks!

paolo.volpato@huawei.com

Questions?

References

[APNIC1] APNIC, "IPv6 Capable Rate by country (%)", 2022, https://stats.labs.apnic.net/ipv6

[APNIC2] APNIC2, "IP addressing in 2021", 2022, https://blog.apnic.net/2022/01/19/ip-addressing-in-2021/

[APNIC3] APNIC, "BGP in 2020 - The BGP Table", 2021, https://blog.apnic.net/2021/01/05/bgp-in-2020-the-bgp-table/

[APNIC4] APNIC, "BGP in 2021 - The BGP Table", 2022, https://blog.apnic.net/2022/01/06/bgp-in-2021-the-bgp-table/

[APNIC5] APNIC, IPv6 Performance Metrics, https://stats.labs.apnic.net/v6perf/XA

[ChStats] https://www.china-ipv6.cn/#/activeconnect/simpleInfo

[IPv6Status] "IPv6 Deployment status", https://datatracker.ietf.org/doc/draft-ietf-v6ops-ipv6-deployment/

[Potaroo] Potaroo, "IPv6 Resource Allocations", 2022, https://www.potaroo.net/bgp/iso3166/v6cc.html

[NST_1] NIST, "Estimating Industry IPv6 and DNSSEC External Service Deployment Status", https://fedv6-deployment.antd.nist.gov/cgi-bin/generate-com

