
A look at BGPsec performance

1

BGPsec ?

• Does it exist at all?
• Won’t work.
• Too slow.
• Need to replace all the hardware.
• Isn’t origin validation enough?
• There are other path validation options available.
• Not scalable.
• Leaks private information.
• Does not address the real problem.
• BGP is secure anyway.
• Key management is too complex.

2

BGPsec ?

• Does it exist at all?
• Won’t work.
• Too slow.
• Need to replace all the hardware.
• Isn’t origin validation enough?
• There are other path validation options available.
• Not scalable.
• Leaks private information.
• Does not address the real problem.
• BGP is secure anyway.
• Key management is too complex.

3

BGPsec protocol trivialized

• Cryptographic validation of traversed AS path

• Transit nodes sign the current AS path and forward AS path hop too.

• Each individual prefix is signed – no aggregation.

4

Experiments

• The overall setup models a route server in a moderately sized IX.
• Take realistic absolute and relative state distribution numbers.
• Number of prefixes and paths.
• Number of prefixes sharing the same path.
• Fanout ratio.
• Feeder side is precomputed ahead of time.
• BGPsec verification is performed prior to path selection.
• Caching.

• The results should not be generalized and interpreted outside of the
experiment context.

5

Experiments

• BGP – 83 s.

• BGPsec – 2049 s.

6

Contemporary compute platforms

• Plenty of raw compute performance capacity

• Memory bandwidth and latency are limiting factors

• Vectorization

• Batching and caching

• Most important – contemporary platforms do not forgive lousy
approaches to software engineering. Protocol engineering needs to
take software and hardware specifics into account seriously.

void memcpy(char *a, char *b, size_t n) {

while (n--)

*a++ = *b++;

}

If you do this to your platform, do not expect
that it will treat you friendly

7

BGPsec receive side processing
rx -> hash -> verify -> process prefix and path

SHA2 for hashing

• Computationally inexpensive – but touches
memory

• Operates on fixed size blocks with 4 byte base
element granularity

• Vectorizes well, constrained by data layout

P-256 for verification

• Computationally significantly expensive – but
does not touch memory

• Vectorizes well, little data dependency

• Batching – ECDSA*

8

Path + SKI + Sig N Path + SKI + Sig 2 Path + SKI + Sig 1 Prefix...

100 (6 + 94) 100 100 5+

Vectorized SHA2 and P-256
Linear code block operating on different data
sets in parallel

Hash multiple blocks in parallel
Sign/verify multiple hashes/signatures in
parallel

Vector lanes of fixed width

+20% latency results in +1500% throughput

If data structures allow.

Path + SKI + Sig N Path + SKI + Sig 2 Path + SKI + Sig 1 Prefix...

HN H... H2 H1

SN

H2

SN S... S2 S1

Keys

100 (6 + 94) 100 100 5+

9

Wire format impact
Memory access is expensive

SHA2 latency is linearly
proportional to block length

Gather operations place significant
restrictions on data format

SHA2 operation width is 4 bytes,
conflicting with wire layout.

ECDSA signing is computationally
expensive but constant, with no
memory access

ECDSA verification is even more
computationally expensive but
constant, with no memory accessBGPsec wire format is incompatible with computation format.

10

Path + SKI + Sig N Path + SKI + Sig 2 Path + SKI + Sig 1 Prefix...

PN ... P2 P1 Sig N ... Sig 2 Sig 1

100 (6 + 94) 100 100 5+

BGPsec transmit side processing
{Prefix, Path and signature elements, Target} -> hash -> sign -> tx

SHA2, same as for the receive side.

• Additional blocks need to be added, different layout for hashing and for
wire encoding

• Target ASN position prevents caching

P-256 for signing

• Computationally expensive – but does not touch memory

• Vectorizes well

11

T Path + SKI + Sig N Path + SKI + Sig 2 Path + SKI + Sig 1 Prefix...

100 (6 + 94)4 100 100 5+

Experiments

• BGP – 83 s.

• BGPsec v0 – 2049 s.

• BGPsec v1 – 272 s.

12

Is BGPsec broken?

No.

As specified now, it is suboptimal and not aligned to contemporary
hardware platform usage patterns.

13

What could be done then?

• BGPsec has some extensibility mechanisms inbuilt

• Protocol is versioned

• Algorithm identifiers could have different meaning in different
versions

• Hashed block layout needs to be rearranged

• Wire format needs to be rearranged

14

Questions

• Can a smart compiler help here?

• Can a fashionable programming language help here?

• Vectorization availability?

• Memory system evolution trends?

15

BGPsec ?

• Does it exist at all?
• Won’t work.
• Too slow.
• Need to replace all the hardware.
• Isn’t origin validation enough?
• There are other path validation options available.
• Not scalable.
• Leaks private information.
• Does not address the real problem.
• BGP is secure anyway.
• Key management is too complex.

16

